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Abstract

A new finite element formulation for the solution of the classical Stefan problem is introduced. It is obtained by a

slight modification of the phase-field formulation used for dendritic growth where both the phase-field / and the

temperature T are discretized. An anisotropic mesh adaptation strategy is also presented to further increase the ac-

curacy of the method. Numerical results for two-dimensional examples illustrating the performance and accuracy of the

proposed method are presented.
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1. Introduction

The classical two-phase Stefan problem can be used to model phase change in various applications. The

two phases, typically solid and liquid, are separated by an interface (or free boundary) which is defined by

the melting temperature Tf . The main difficulty in such simulations is to accurately compute this moving

free surface where phase change occurs. Moreover, on this interface, an energy balance condition, often

called the Stefan condition, must be imposed.

These difficulties were partly overcome by the introduction of the so-called enthalpy formulation. In this

formulation, the interface is not explicitly computed and the energy balance condition is satisfied auto-
matically. The reader is referred to Nochetto et al. [11] and to Fortin and Belhamadia [5] for a complete

discussion.

As an alternative, the phase-field formulation was introduced for the solution of the modified Stefan

problem where the Gibbs–Thomson interface condition is imposed (see [9] for instance). This condition
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includes surface effects such as surface tension and undercooling and is more general than the Stefan

condition.

The main focus of this study is to present an intermediate formulation between the enthalpy and phase-
field formulations. In the phase-field model, two partial differential equations have to solved: one for the

temperature and the second for the phase parameter / which takes on constant values in the solid and

liquid phases. For the classical Stefan problem the partial differential equation for / can be replaced by an

algebraic equation while the heat equation remains the same. This formulation simplifies the phase-field

model and can be used when surface effects are neglected at the interface. For this reason the presented

formulation is called a semi-phase-field model. The proposed formulation presents strong similarities with

the phase-field relaxation model introduced in Jiang and Nochetto [6].

To further increase the accuracy of the numerical simulations, an adaptive remeshing method based on
an approximation of a hierarchical error estimator is also introduced. As shall be seen, the adaptive method

concentrates the elements in the vicinity of the freezing front allowing a better prediction of the interface

position and form.

The layout of this paper is as follows: the Stefan problem is presented in the next section while the semi-

phase-field model is described in Section 3. Section 4 is devoted to the description of the adaptive strategy

and some numerical results showing the potential of the proposed formulation and adaptive strategy are

presented in Section 5.
2. Stefan problem

From a numerical point of view, phase change problems require the solution of the heat conduction

equation in a domain X consisting of solid and liquid phases Xs and Xl. The heat conduction equation must

be solved in each phase while at the interface C, the temperature T (in K) is continuous and its value is the

melting temperature Tf . Moreover, a heat balance equilibrium condition must also be enforced on C. The
governing equations for multi-phase heat conduction problems have the form

qici
oT
ot �r � ðK irT Þ ¼ fi in Xi; i ¼ s; l;

T ¼ Tf on C;
ðK srT Þ � ns � ðK lrT Þ � nl ¼ qlLVC on C:

8<
: ð1Þ

The last equation is the energy balance (Stefan) condition. Subscripts s and l refers to the solid and liquid

phases and the following symbols have been used: K i is the thermal conductivity tensor (W/m K), qi is the

density (kg/m3), ci is the specific heat (J/kg K), fi is a possible heat source, L is the latent heat of fusion (J/

kg), VC is the interface normal velocity (m/s).

The major difficulty in this problem is that the interface C is not known a priori (nor its normal velocity

VC). Moreover, the interface position varies with time and this has major consequences on the adaptive

strategy. The continuity of the temperature is natural in a finite element implementation but the heat flux
equilibrium condition on C is not so easily enforced. One way to do so is to introduce the enthalpy for-

mulation as described in the next section. A modification of the enthalpy formulation related to phase-field

theory will also be introduced.
3. Enthalpy and semi-phase-field formulations

It is convenient to first recall the enthalpy formulation of the Stefan problem. The reader is referred to
[3,5,11] for a complete discussion. One has to solve
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oH
ot

�r � ðKrT Þ ¼ f ; ð2Þ

where K ¼ K i, f ¼ fi in Xi and H is the enthalpy illustrated in Fig. 1 and defined by

H ¼ Hs ¼ qscsT if T < Tf ;
Hl ¼ qlLþ qscsTf þ qlclðT � TfÞ if T > Tf :

�

It can be shown that problem (2) is equivalent to the Stefan problem (1) and that the interface condition is

automatically satisfied in the distributional sense, i.e.

oH
ot

¼
qscs

oT
ot in Xs;

qlcs
oT
ot in Xl;

qlLVCdC on C:

8<
:

The Dirac delta distribution dC comes from the discontinuity of H as a function of T (see Fig. 1). On the

other hand, phase-field formulation requires the introduction of the phase-field function / defined as

/ ¼ 0 in Xs;
1 in Xl:

�

As illustrated in Fig. 2 the following decomposition is introduced:

H ¼ H1 þ qlL/;

where H1 is now a continuous function:

H1 ¼
qscsT in Xs;
qscsTf þ qlclðT � TfÞ in Xl;

�

so that

oH1

ot
¼ qscs

oT
ot in Xs;

qlcl
oT
ot in Xl:

�

The Dirac delta function qlLVCdC now comes from the time derivative of the term qlL/. Replacing the last

equation in system (2), a new formulation is obtained which is also equivalent to the classical Stefan
problem. Eq. (2) now takes the following form:
rl L

T

H

Tf

Fig. 1. Enthalpy–temperature relation.
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Fig. 2. Relation H ¼ H1 þ qlL/.
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að/Þ oT
ot

þ qL
o/
ot

�r � ðKð/ÞrT Þ ¼ f ð/Þ;

where

að/Þ ¼ qscs þ / qlcl � qscsð Þ;
Kð/Þ ¼ K s þ / K l � K sð Þ;
f ð/Þ ¼ fs þ / fl � fsð Þ:

8<
:

The function / has now to be computed. In phase-field theory (see [4,6,7,9]), an ordinary differential

equation is introduced for the computation of /. In this model it is preferable to use an algebraic equation
but this simplification is valid only for the classical Stefan problem. For this reason this formulation is

referred to as a semi-phase-field model. The algebraic equation takes the form

/ ¼ F ðT Þ ¼ 0 if T < Tf ;
1 if T > Tf ;

�

and the Stefan problem becomes equivalent to the following system:

að/Þ oT
ot

þ qL
o/
ot

�r � Kð/ÞrTð Þ ¼ f ð/Þ;

/ ¼ F ðT Þ:

8<
: ð3Þ

Problem (3) is equivalent to the Stefan problem (1) and can be easily extended to the case where qi, ci and
K i are functions of the temperature.

In applications, phase change is not always instantaneous and may occur in a small temperature range

½Tf � �; Tf þ ��. The relation for F ðT Þ can thus be replaced by a regularized one (F�ðT ÞÞ and it can be done in

a number of more or less efficient ways. The idea is to connect the constant value 0 (for T < Tf � �) and the
constant value 1 (for T > Tf þ �) by a cubic Hermite polynomial

/ ¼ F�ðT Þ ¼
0 if T < Tf � �;
cubic Hermite polynomial if Tf � �6 T 6 Tf þ �;
1 if T > Tf þ �:

8<
:

The resulting curve is differentiable as long as � 6¼ 0. The curve gets however stiffer as � decreases. The

functions a, K , and f are then automatically regularized in a similar way since they depend on /.
The regularized semi-phase-field equations are then given by

að/Þ oT
ot þ qL o/

ot �r � ðKð/ÞrT Þ ¼ f ð/Þ;
/ ¼ F�ðT Þ:

(
ð4Þ
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3.1. Weak formulation and finite element discretization

The variational formulation corresponding to system (4) is straigthforward. To simplify the presenta-
tion, homogeneous boundary conditions are supposed for the temperature T but the general case follows

the same lines. Multiplying the first equation by a test function vT and the second by a (possibly discon-

tinuous) test function v/, the variational formulation can be written as

R
X að/Þ oT

ot
vT þ qlL

o/
ot

vT þ ðKð/ÞrT Þ � rvT

� �
dX ¼

R
X f ð/ÞvT dX;R

Xð/� F�ðT ÞÞv/ dX ¼ 0:

8<
:

Starting from the solution T ðnÞ and /ðnÞ ¼ F�ðT ðnÞÞ at time tðnÞ, a fully implicit Euler scheme is used for the
time derivative discretization which gives

oT
ot

ðtðnþ1ÞÞ ’ T ðnþ1Þ � T ðnÞ

Dt
and

o/
ot

ðtðnþ1ÞÞ ’ /ðnþ1Þ � /ðnÞ

Dt
:

The variational formulation becomes

R
X að/

ðnþ1ÞÞ T ðnþ1Þ � T ðnÞ

Dt

� �
vT dXþ

R
X qlL

/ðnþ1Þ � /ðnÞ

Dt

 !
vT dX

þ
R
X Kð/ðnþ1ÞÞrT ðnþ1Þ � rvT dX ¼

R
X f ð/

ðnþ1ÞÞvT dX;R
X /ðnþ1Þ � F�ðT ðnþ1ÞÞ
� �

v/ dX ¼ 0:

8>>>><
>>>>:

ð5Þ

This non-linear system is solved at each time step with Newton�s method for example. The parameter � has
a smoothing effect but the problem can still be very stiff for small values of �. Discontinuous approximation

of / may be considered such as piecewise constant or linear polynomials. This seems a natural thing to do

when considering the discontinuous nature of /. This was done in [5] where in absence of mesh adaptation,

it was shown that discontinuous discretizations of / provide better results. However, in this paper only

continuous approximations are considered since mesh adaptation allows very accurate computation of the

interface. Consequently, a quadratic discretization of the temperature T and a linear approximation of /
will be used in all numerical simulations.
4. Adaptive strategy

Many adaptive strategies have been developed in the last few years, in particular for phase change

problems. In [8,9], a one-dimensional adaptive strategy was developed and many convincing numerical

examples were presented. At each time step, the non-linear enthalpy equation is solved using a semi-implicit

moving mesh discretization. In [11] an adaptive mesh refinement strategy is presented where three local
parameters are used to equidistribute the interpolation error for the temperature. Two-dimensional iso-

tropic meshes are obtained with a high concentration of elements near the interface. In [3], adapted grids

are obtained from a mapping of the physical domain to the computational domain which is designed to

concentrate the mesh around the interface. In both these works, isotropic meshes are obtained.

In this paper, attention will be given to the idea of hierarchical error estimator introduced in [1,2]. The

major advantage is that the hierarchical method provides enough directional information to drive an an-

isotropic mesh adaptation procedure.
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4.1. Hierarchical error estimator

The hierarchical method is based on a simple idea: given an approximation of order k say, a new ap-
proximation of order k þ 1 could be used to assess the accuracy of the solution. In the elliptic case, the

continuous problem consists in finding u 2 V such that

aðu;wÞ ¼ lðwÞ 8w 2 V ; ð6Þ
where a and l are, respectively, continuous bilinear and linear forms on an appropriate functional space V .
If now Vh;k � V denotes the discrete space of piecewise continuous polynomials of degree k, the approxi-

mate solution is obtained by finding uh;k 2 Vh;k such that

aðuh;k;wh;kÞ ¼ lðwh;kÞ 8wh;k 2 Vh;k:

It is easily shown that the resulting error ek ¼ u� uh;k is the solution of

aðek;wÞ ¼ rðwÞ 8w 2 V ;

where rðwÞ ¼ lðwÞ � aðuh;k;wÞ is the residual. An approximation of this error can be obtained by consid-

ering the space Vh;kþ1 of piecewise continuous polynomials of degree k þ 1 and by solving

aðeh;kþ1;wh;kþ1Þ ¼ rðwh;kþ1Þ 8wh;kþ1 2 Vh;kþ1:

This would imply computing a full problem in the space Vh;kþ1, which would obviously be prohibitive. The

idea is then to use a hierarchical finite element basis of the space Vh;kþ1:

Vh;kþ1 ¼ Vh;k þ Ch;kþ1;

so that Vh;kþ1 is the direct sum of Vh;k (polynomials of degree k) and a correction space Ch;kþ1 consisting of

polynomials of degree k þ 1. The error can be approximated by solving the following problem:

aðêh;kþ1; ch;kþ1Þ ¼ rðch;kþ1Þ 8ch;kþ1 2 Ch;kþ1: ð7Þ

This means solving a new global problem whose dimension is that of Ch;kþ1 which is much smaller than
Vh;kþ1. For elliptic partial differential equations this is well conditioned problem (the condition number does

not depend on the mesh size) which can be solved in a few iterations by any simple iterative method such as

the successive over-relaxation method or the conjugate gradient method. This approach was successfully

used in Ndikumagenge [10].

It is however preferable to avoid completely having to solve any global problem. Moreover, in practice

problems are not always of elliptic type and the above strategy become cumbersome. The idea is thus to

compute the error in Ch;kþ1 in a different way. To achieve this goal, problem (7) is rewritten as

aðuh;k þ êh;kþ1; ch;kþ1Þ ¼ lðch;kþ1Þ 8ch;kþ1 2 Ch;kþ1; ð8Þ

so that the error can be seen as a degree k þ 1 hierarchical complement to the degree k solution uh;k.
Consequently, if by one way or another, a hierarchical complement to uh;k can be constructed consistent

with problem (6), then it will be an approximation of the error in problem (7).

This idea was explored in [14] where they have made an experimental evaluation of some estimation

procedures. In practice, an approximation of the hierarchical method was used, based on a smooth rein-

terpolation of the computed solution uh;k that shall be described in the following section.

4.2. Approximation of the hierarchical error estimator

In this section a heuristic way of approximating the hierarchical estimator is described. The practical

advantage of this method is that it can be used independently of the problem (even without knowing the
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problem). Only the solution uh;k and its corresponding mesh have to be provided. The technique essentially

relies on the assumption that a reasonable estimate of the error can be obtained from a suitable reinter-

polation of the numerical solution uh;k. One example of such a procedure will now be presented.
Starting from a standard C0 finite element solution uh;k of degree k, an approximation of the first and

second-order derivatives at the vertices of the triangulation is needed. Since uh;k is not differentiable, a way

to do that is by fitting a local quadratic interpolation on every vertex P ¼ ðxP ; yP Þ of the mesh. One then has

to define a patch of elements adjacent to the vertex P (see Fig. 3). This patch is also called a shell and

denoted S. It is also possible (and in some cases necessary) to include elements not directly connected to

the vertex. Over this shell, the solution is approximated by a quadratic (truncated) Taylor series

uappðx; yÞ ¼ uh;kðxP ; yP Þ þ uappx ðxP ; yP Þðx� xP Þ þ uappy ðxP ; yP Þðy � yP Þ þ uappxx ðxP ; yP Þ
ðx� xP Þ2

2

þ uappxy ðxP ; yP Þðx� xP Þðy � yP Þ þ uappyy ðxP ; yP Þ
ðy � yP Þ2

2
;

where only uh;kðxP ; yP Þ is known. Let us suppose that the patch of elements adjacent to vertex ðxP ; yP Þ
contains N vertices Pi ¼ ðxi; yiÞ, the idea is then to determine the best values of first- and second-order

derivatives in a least square sense, i.e. values minimizing the Euclidian norm of the vector

uappðx1; y1Þ � uh;kðx1; y1Þ
uappðx2; y2Þ � uh;kðx2; y2Þ
uappðx3; y3Þ � uh;kðx3; y3Þ

..

.

uappðxN ; yN Þ � uh;kðxN ; yN Þ

2
666664

3
777775:

This minimization problem can be written in matrix form as

min
y

kBy� bk2 ð9Þ

where

y ¼

uappx ðxP ; yP Þ
uappy ðxP ; yP Þ
uappxx ðxP ; yP Þ
uappxy ðxP ; yP Þ
uappyy ðxP ; yP Þ

2
66664

3
77775; b ¼

uh;kðx1; y1Þ � uh;kðxP ; yP Þ
uh;kðx2; y2Þ � uh;kðxP ; yP Þ
uh;kðx3; y3Þ � uh;kðxP ; yP Þ

..

.

uh;kðxN ; yNÞ � uh;kðxP ; yP Þ

2
666664

3
777775
P

3

P4

P5

P2

P1

PN

PP1

P2
P3

P4

P5

P6

PN

P7

...P

Fig. 3. Vertices adjacent to P .
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and B is the N � 5 matrix

B ¼

ðx1 � xP Þ ðy1 � yP Þ 1
2
ðx1 � xP Þ2 ðx1 � xP Þðy1 � yP Þ 1

2
ðy1 � yP Þ2

ðx2 � xP Þ ðy2 � yP Þ 1
2
ðx2 � xP Þ2 ðx2 � xP Þðy2 � yP Þ 1

2
ðy2 � yP Þ2

ðx3 � xP Þ ðy3 � yP Þ 1
2
ðx3 � xP Þ2 ðx3 � xP Þðy3 � yP Þ 1

2
ðy3 � yP Þ2

..

. ..
. ..

. ..
. ..

.

ðxN � xP Þ ðyN � yP Þ 1
2
ðxN � xP Þ2 ðxN � xP ÞðyN � yP Þ 1

2
ðyN � yP Þ2

2
66666666664

3
77777777775
:

Once this system has been solved, the solution uh;k and approximations of all its first and second-order

derivatives are known at the triangulation vertices. It is then possible to build a Hermite approximation of

degree 5 in each element which is seemingly a better approximation to the exact solution u than uh;k. This
Hermite polynomial will be used to construct the hierarchical complement to uh;k in Vh;kþ1. The idea will be

illustrated in the linear case k ¼ 1. The situation is slightly more complicated for higher degree polynomials

but it follows the same lines (see [10]).

Let uh;1 be a piecewise linear solution. In a hierarchical quadratic basis, the exact solution u can be
interpolated on each triangular element as

uðxÞ ’
X3
i¼1

aiðuÞw1;iðyÞ þ
X3
i¼1

biðuÞw2;iðxÞ;

where w1;iðxÞ are linear basis functions associated to the vertices of the element while the basis functions

w2;iðxÞ are polynomials of degree 2 associated to the triangle mid-edges. The degrees of freedom ai and bi

are functions of u. In a standard quadratic basis, the a�s are nodal values of f (ai ¼ uðPiÞ, i ¼ 1; 2; 3; . . . ; 6)
but in a hierarchical basis, it is easily shown that the degrees of freedom are given by

aiðuÞ ¼ uðPiÞ and biðuÞ ¼ uðM ijÞ �
uðPiÞ þ uðPjÞ

2
; i ¼ 1; 2; 3; ð10Þ

where ðM ijÞ is the mid-side node of the edge between vertices Pi and Pj. From Section 4.2, the following

expression has to be evaluated to obtain an approximation of the error:

êh;2 ’
X3
i¼1

biðuÞw2;iðxÞ

and these bi�s are approximated using the second part of Eq. (10) and replacing u by the degree 5 Hermite

polynomial previously described. The procedure is similar with a quadratic approximation k ¼ 2 and the
error is then of degree 3 as described in [10].

4.3. Anisotropic mesh adaptation

The objective of mesh adaptation is, starting from a solution on an initial mesh, to provide a new mesh

where a prescribed absolute error ed is reached everywhere in the domain. The mesh adaptation procedure

is based on a number of local operations on the initial mesh:

• edge refinement;

• edge swapping;

• vertex suppression;

• vertex displacement.
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This sequence is repeated 8–10 times until the mesh stabilizes. The decision whether a given local operation

has to be performed is based on the definition of the error on an element K and on its gradient, respectively,

defined by

kEkK ¼
Z
K
jêh;kþ1j2 dK

� �1=2

and krEkK ¼
Z
K
jrêh;kþ1j2 dK

� �1=2

:

The local operations are used with two objectives: control the error level on each element so that the

absolute error takes the value ed everywhere. On each element K, this implies that

kEkK ’
Z
K
jed j2 dK

� �1=2

¼ edðareaðKÞÞ1=2:

The second objective is to achieve equidistribution of this error by minimizing the error gradient. If the

error gradient vanishes, than the error is everywhere constant and takes the value ed . Edge refinement and
vertex suppression are used in order to control the error level while vertex displacement and edge swapping

are used to minimize its gradient. As shall be seen, this procedure is enough to provide strongly anisotropic

meshes and very accurate solutions.

In each local operation, a shell S is constructed consisting of adjacent elements. For the operations on

the edges, the shell usually consists of the two elements adjacent to that edge while for operations acting on

the vertices, the shell is the patch of surrounding elements. In some pathological cases (not discussed here),

more attention has to be given to the construction of the shell.

The algorithm consists in sweeping the vertices and edges repeatedly and determine if a given local
operation is needed:

• Edge refinement (see Fig. 4).

An edge will be cut in halves if

X
K2S

Z
K
jêh;kþ1j2 dK >

X
K2S

Z
K
jed j2 dK;

thus eliminating the two triangles of shell S and creating a new shell S0 consisting of four new triangles.
• Vertex suppression (see Fig. 5).

If

X
K2S

Z
K
jêh;kþ1j2 dK <

X
K2S

Z
K
jed j2 dK;
K                                                                                     K'

S                                                                                  S'

Fig. 4. Edge refinement.
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S

S'

K'

Fig. 5. Vertex suppression.
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then the vertex will be removed at the additional condition that

X
K 02S0

Z
K 0
jêh;kþ1j2 dK 0 <

X
K 02S0

Z
K 0
jed j2 dK 0;

where K 0 are the new elements obtained by removing the vertex.

• Edge swapping (see Fig. 6).

The edge between two triangles will be swapped if

X
K2S

Z
K
jrêh;kþ1j2 dK >

X
K 02S0

Z
K 0
jrêh;kþ1j2 dK 0:
K
K'

S'S

Fig. 6. Edge swapping.
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• Vertex displacement (see Fig. 7).

A vertex will be moved inside the shell in such a way that

X
K2S

Z
K
jrêh;kþ1j2 dK >

X
K 02S0

Z
K 0
jrêh;kþ1j2 dK 0:

Each time a new vertex is created (edge refinement) or moved, the solution uh;k and its first and second-order

derivatives must be reinterpolated at the vertex location in order to pursue the adaptation process. Suppose

that this new vertex is located in some element K. The value of uh;k is computed using the fifth-order

polynomial constructed in Section 4.2. Second-order derivatives are known at the vertices of element K and

consequently a linear interpolation can be used to determine second-order derivatives at the new vertex

location. Finally, a linear interpolation could also be used for first-order derivatives but there exists a better

solution. Indeed, first-order derivatives are known at vertices together with second-order derivatives.
Consequently, a third-order Hermite interpolation can be used to interpolate first-order derivatives.

The procedure described in this section can be modified to take more than one scalar solution into

account when adapting the mesh. For systems of equations and time-dependent problems, this is necessary.

The idea is very simple and will be used later on. Once the pertinent adaptation variables have been chosen,

an error level ed is established for each variable, possibly different from one variable to the other. This

choice is delicate since the adaptation variables may have values of totally different scales. Then, the local

operations are performed in order to determine the mesh best suited for all variables. For example, an edge

will be cut if the estimated error on one of the variable is too large. A vertex will be removed if the cor-
responding criterion is satisfied for all variables and so on. As shall be seen, this procedure can be used for

time-dependent problems where the mesh can be adapted to the solution at different times.

4.4. Adaptive strategy for time-dependent problems

The overall adaptive strategy is the following:

1. Starting from a solution ðT ðnÞ;/ðnÞÞ and a mesh MðnÞ at time tðnÞ.
2. Solve system (5) on meshMðnÞ to obtain a first approximation ð ~T ðnþ1Þ; ~/ðnþ1ÞÞ of the solution at time tðnþ1Þ.
3. Adapt the mesh on the new solution ð~T ðnþ1Þ; ~/ðnþ1ÞÞ and ðT ðnÞ;/ðnÞÞ to obtain Mðnþ1Þ.

4. Reinterpolate ðT ðnÞ;/ðnÞÞ on Mðnþ1Þ.

5. Solve system (5) on mesh Mðnþ1Þ for ðT ðnþ1Þ;/ðnþ1ÞÞ.
It is worth mentioning a few words about this strategy. The mesh has to be adapted at each time step in

order to preserve the accuracy of the solution. A crucial step is the reinterpolation of ðT ðnÞ;/ðnÞÞ on the mesh

Mðnþ1Þ. If care is not taken and if the new mesh is not well adapted to the solution ðT ðnÞ;/ðnÞÞ, this rein-
terpolation can give very poor results. This is why in step 3, the mesh is adapted on the four variables

ð ~T ðnþ1Þ; ~/ðnþ1ÞÞ and on ðT ðnÞ;/ðnÞÞ to avoid inaccurate reinterpolation of the solution at time tðnÞ on the mesh
Mðnþ1Þ. The resulting mesh is thus adapted to the actual and preceeding solutions.
K K'

S'S

Fig. 7. Vertex displacement.
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It is also possible to modify the above strategy and adapt the mesh only on ~/ðnþ1Þ (and /ðnÞ). The freezing

front is then well captured but the temperature is slightly less accurate. However, the number of elements is

greatly reduced since the mesh is refined only in the vicinity of the interface. In the numerical results,
examples will be shown where both strategies were employed.
5. Numerical results

In this section, four different problems assessing the reliability and accuracy of the proposed numerical

method and adaptive strategy will be presented. Starting with two problems having analytical solutions,

comparisons between analytical and numerival solutions will be performed. The last two problems are
classical benchmarks for phase change computations.

5.1. Stefan problem with analytical solution

The first test case is a one-dimensional example for which there exists an analytical solution (see [13]).

Although the problem is one-dimensional, the computation will be performed in two dimensions.

The computational domain is the rectangle ½0; 2� � ½0; 1�. The temperature is maintained fixed on the side

x ¼ 0 (T ð0; y; tÞ ¼ T1) while homogeneous Neumann conditions are imposed on all the other sides. The
thermal conductivities tensors are isotropic and take the form K s ¼ KsI and K l ¼ KlI , where I is the unit

tensor. The x-position of the solid–liquid interface is noted XfðtÞ and is given by (see [13])

XfðtÞ ¼ 2k
ffiffiffiffiffiffi
jst

p
; ð11Þ

while the analytical temperature is given by

T ¼

T1 þ
Tf � T1
erfðkÞ erf

x
2
ffiffiffiffiffiffi
jst

p
� �

if x < XfðtÞ;

T0 � ðT0 � TfÞ
erfc

x
2
ffiffiffiffiffiffi
jst

p
� �

erfc
k
ffiffiffiffiffi
js

pffiffiffiffi
jl

p
� � if xPXfðtÞ;

8>>>>>>><
>>>>>>>:

ð12Þ

where

erfðxÞ ¼ 2ffiffiffi
p

p
Z x

0

e�t2 dt; erfcðxÞ ¼ 1� erfðxÞ;

and js ¼ Ks=qscs, jl ¼ Kl=qlcl and T0 is the initial temperature. The value of the parameter k is a solution of

the following non-linear equation:

e�k2

erfðkÞ �
ðT0 � TfÞ

ffiffiffiffiffi
jsl

p

ðTf � T1ÞKsl

e�kjsl

erfcðk ffiffiffiffiffi
jsl

p Þ �
ffiffiffi
p

p
qlLkjs

KsðTf � T1Þ
¼ 0; ð13Þ

where jsl ¼ js=jl and Ksl ¼ Ks=Kl. In the numerical simulations the following values have been used:

T0 ¼ 0 �C; qs ¼ ql ¼ 1;
T1 ¼ �45 �C; cs ¼ cl ¼ 1;
Tf ¼ �0:15 �C; Ks ¼ Kl ¼ 1:08;
k ¼ 0:51531; L ¼ 70:26:

ð14Þ
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With these values, the non-linear equation (13) was solved (by a secant method for example) and the value

k ¼ 0:51531 was obtained. The initial temperature was set to 0 and since at that time there is no solid

region, X ð0Þ ¼ 0.
Fig. 8 presents the initial mesh together with its time evolution. The one-dimensional nature of the

solution is clearly seen. The elements are strongly elongated in the y-direction and concentrated in the

vicinity of the front. On the walls, the elements are not as elongated as in the middle of the domain. No

satisfactory explanation was found for this behaviour. This is probably due to the approximation of the

hierarchical error estimator which is less accurate on the boundary since the construction of the shell for

solving Eq. (9) is more delicate. The last picture in Fig. 8 shows the elongation of the elements in the region

of the front and on the bottom wall of the domain at t ¼ 1:6. Fig. 9 shows the numerical solution T and / at

time t ¼ 1. The discontinuity of / is very well captured, thanks to the high element concentration near the
discontinuity. Finally, Fig. 10 shows a superposition of the numerical and analytical solutions at time t ¼ 1

and t ¼ 2. They are almost undistinguishable.
Fig. 8. Evolution of the front for the one-dimensional problem. (a) t ¼ 0; (b) t ¼ 0:4; (c) t ¼ 0:8; (d) t ¼ 1:2; (e) t ¼ 1:6; (f) t ¼ 2; (g)

close up view near the wall.



Fig. 9. Computed solutions for T and / at t ¼ 1. (a) T at t ¼ 1; (b) / at t ¼ 1.
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Fig. 10. Superposition of analytical and numerical temperature at t ¼ 1 and t ¼ 2. (a) t ¼ 1; (b) t ¼ 2.
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5.2. Oscillating circle

In this problem, a circular freezing front interface oscillating in a square cavity is considered. This

problem was also solved in [12]. For this specific problem, the form of the freezing front is fixed (a circle of

radius 1/6) while its position varies with time.

The computational domain is the square X ¼ ½0:1; 0:7� � ½0:2; 0:8�. The center of the circle is moving up

and down along the axis x ¼ 1=3 and is located at position ð1=3; aðtÞÞ with aðtÞ ¼ 0:5þ 0:1 sinð12:5tÞ. The
period of oscillation is thus 4p=25. The main interest of this problem is that there exists an analytical

solution for the temperature given by

T ðx; y; tÞ ¼ 0:75ð6r2 � 1=6Þ if r < 1=6;
ð1:5� _aðtÞ sin/Þðr � 1=6Þ if rP 1=6;

�
ð15Þ
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where r ¼ ððx� 1=3Þ2 þ ðy � aðtÞÞ2Þ1=2, sin/ ¼ ððy � aðtÞÞ=rÞ and _aðtÞ ¼ ðda=dtÞðtÞ. This function is a so-

lution of the Stefan problem (1) if a proper source term f is provided. This can be done by inserting the

solution (15) in the left-hand side of the first equation of system (1). The proper right-hand side f is easily
obtained using Maple for instance.

Boundary conditions must also be provided. In this case, Dirichlet boundary conditions compatible with

the analytical solution are given on all sides. The initial condition is also compatible with solution (15). The

other parameters are given in the following table:

qs ¼ ql ¼ 1 L ¼ 1;
cs ¼ cl ¼ 1 Tf ¼ 0;
Ks ¼ Kl ¼ 1:

ð16Þ

Fig. 11 shows the evolution of the mesh with time. The interface is clearly seen and is very close to the
analytical position. Indeed, Fig. 12 shows the L2 norm of the error on the temperature. In this problem, the

target absolute value ed on the temperature was fixed to 0.001. If this target value is attained, then one

should have

kEk2;X ’ edðareaðXÞÞ1=2 ¼ 6:0� 10�4;

which is very close to the values observed in Fig. 12.
Fig. 11. Mesh evolution for the oscillating circle. (a) t ¼ 0; (b) t ¼ 4p=250; (c) t ¼ 8p=250; (d) t ¼ 12p=250; (e) t ¼ 16p=250; (f)
t ¼ 20p=250.
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5.3. Oscillating source

This problem was also solved in [3] and [4]. The computational domain is the square ½�1; 1� � ½�1; 1�.
The initial temperature is given by T ðx; y; 0Þ ¼ y=10. A Dirichlet boundary condition T ðx; y; tÞ ¼ y=10 is

enforced on the left, right and top sides while a homogeneous Neumann condition is imposed on the last

side (y ¼ �1). The heat source f for this problem is given by

f ðx; ; y; tÞ ¼ cos
t
5

� �
max 0; 3:125

 
� 50 x

� 
þ 1

5

�2

þ y
�

þ 1

2

�2
!!

þ sin
t
5

� �
max 0; 3:125

 
� 50 x

� 
þ 1

5

�2

þ y
�

� 1

2

�2
!!

:

No exact solution is known for this problem. The interest of this problem is that the source term is time-

oscillating thus provoking strong local changes in the interface position and form as illustrated in Fig. 13

where the mesh was adapted taking into account the variations of T and /. As can be seen, the mesh is

concentrated near the interface which evolves rapidly. The mesh also detects the influence of the source

term which provokes two slightly concentrated spots in the mesh.

It is also possible to adapt the mesh only on the variable / as illustrated in Fig. 14. The number of

elements is greatly reduced since the mesh is almost uniform far from the interface. This gain in compu-

tational time introduces a small inaccuracy in the variable T but the interface position is still very well
predicted. Fig. 15 presents two and three-dimensional views of the evolution of the interface / with time.

Very shasp transitions for / can be observed. The numerical results presented in this paper are certainly

comparable to those previously observed in the literature (see [3,4]).

Finally, the influence of the prescribed value of the absolute error ed (see Section 4.3) on the number of

elements was tested. This is illustrated in Fig. 16 where the time-evolution of the number of elements in the



Fig. 13. Oscillating source: adaptation on T and /. (a) t ¼ 0; (b) t ¼ 1; (c) t ¼ 1:5; (d) t ¼ 2; (e) t ¼ 8:5; (f) t ¼ 9; (g) t ¼ 9:5; (h) t ¼ 10;

(i) t ¼ 10:5; (j) t ¼ 11; (k) t ¼ 11:5; (l) t ¼ 12.
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Fig. 14. Oscillating source: adaptation on / only. (a) t ¼ 0; (b) t ¼ 1; (c) t ¼ 1:5; (d) t ¼ 2; (e) t ¼ 8:5; (f) t ¼ 9; (g) t ¼ 9:5; (h) t ¼ 10; (i)

t ¼ 10:5; (j) t ¼ 11; (k) t ¼ 11:5; (l) t ¼ 12.
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Fig. 15. Oscillating source: time-evolution of the interface /. (a) t ¼ 1; (b) t ¼ 1:5; (c) t ¼ 2; (d) t ¼ 1; (e) t ¼ 1:5; (f) t ¼ 2; (g) t ¼ 8:5;

(h) t ¼ 10; (i) t ¼ 12; (j) t ¼ 8:5; (k) t ¼ 10; (l) t ¼ 12.
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Fig. 16. Oscillating source: number of elements vs time for ed ¼ 0:0025, 0.0015 and 0.0009. (a) Adaptation on /, (b) adaptation on T
and /.
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meshes of Figs. 13 and 14 is illustrated. As expected, the smaller the value of ed , the larger the number of
elements. Moreover, adapting on / only reduces by 20–25% the number of elements. The six curves have

almost exactly the same form and the number of elements obviously follows the complexity of the interface

form.

5.4. Formation of a cusp

In the last example, the freezing front takes the form of a cusp which gradually shrinks to nothing at time

t ¼ 1. This problem was also solved in [3] and [11]. The computational domain is the rectangle
½�2; 4� � ½0; 5�. The initial temperature is given by
T0ðx; yÞ ¼

0:25ðr2 � 1Þ for r6 1; yP 2;
0:25ðx2 � 1Þ for jxj > 1; y < 1;
ðr � 1Þ for r > 1; yP 2;
5ðjxj � 1Þ for jxj > 1; y < 1;
ðjxj � 1Þð3� 2cospðy � 2ÞÞ for jxj > 1; 16 y < 2;

8>>>><
>>>>:
where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. A time-dependent Dirichlet boundary condition
T ¼ ð1þ tÞT0ðx; yÞ;

is enforced on the sides x ¼ �2, x ¼ 4 and y ¼ 5 while a homogeneous Neumann condition is imposed on

the last side. The boundary conditions are thus time dependent.
Fig. 17 shows once again the evolution of the meshes when adapting the mesh on both T and /. The

mesh is still well adapted to preserve the accuracy of the temperature solution The cusp gradually shrinks to

nothing at time t ¼ 1. The figure also clearly shows the presence of regions where the elements are con-

centrated due to the boundary conditions which are detected by the adaptation on the variable T . The
adaptation on the variable / only (see Fig. 18) was also tested. Here again, the number of elements is



Fig. 17. Formation of a cusp: time-evolution of the mesh. (a) t ¼ 0; (b) t ¼ 0:1; (c) t ¼ 0:3; (d) t ¼ 0:5; (e) t ¼ 0:6; (f) t ¼ 0:65; (g)

t ¼ 0:7; (h) t ¼ 1.
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greatly reduced but the position of the interface is still obtained at almost the same position. The tem-

perature variations on the boundaries are however no longer detected. These results are again comparable

to those presented in [3,7,11].
6. Conclusions

In this paper a two-equation model for the solution of phase change problems was introduced. In this
model, both the temperature T and the phase-field function / are computed. An adaptive remeshing

strategy based on a hierarchical error estimator was also described. The presented numerical examples



Fig. 18. Formation of a cusp: adaptation on / only. (a) t ¼ 0; (b) t ¼ 0:1; (c) t ¼ 0:3; (d) t ¼ 0:5; (e) t ¼ 0:6; (f) t ¼ 0:65; (g) t ¼ 0:7; (h)

t ¼ 1.
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shows that the numerical method coupled with the adaptive strategy provides extremely accurate prediction

of both the temperature and interface position.

This finite element method for the Stefan problem described in this paper has been implemented in three

dimensions and preliminary results are convincing. The implementation of the hierarchical error estimator

is however not yet completed in the three-dimensional case.
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